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[1] Although surface soil moisture data from different
sources (satellite retrievals, ground measurements, and land
model integrations of observed meteorological forcing data)
have been shown to contain consistent and useful
information in their seasonal cycle and anomaly signals,
they typically exhibit very different mean values and
variability. These biases pose a severe obstacle to
exploiting the useful information contained in satellite
retrievals through data assimilation. A simple method of
bias removal is to match the cumulative distribution
functions (cdf) of the satellite and model data. However,
accurate cdf estimation typically requires a long record of
satellite data. We demonstrate here that by using spatial
sampling with a 2 degree moving window we can obtain
local statistics based on a one-year satellite record that are a
good approximation to those that would be derived from a
much longer time series. This result should increase the
usefulness of relatively short satellite data records. INDEX
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1. Motivation

[2] Long-term in situ measurements of soil moisture are
limited to parts of Eurasia and small sections of North
America [Robock et al., 2000]. To derive global soil mois-
ture distributions, as might be needed for the initialization of
seasonal forecast systems [Koster et al., 2004], two alterna-
tive data sources are often considered. First, useful global
distributions of soil moisture can be produced by a land
surface model when forced with observed precipitation,
radiation, and other meteorological data [Rodell et al.,
2003]. Second, satellite sensors can provide passive C-band
(6.6 GHz) or L-band (1.4 GHz) radiance measurements that
can be interpreted in terms of surface soil moisture content
[Owe et al., 2001; Jackson et al., 2002]. However, the
model-based product is subject to the many limitations of
the model used, to errors in the specification of vegetation
and soil parameters, and to errors in the forcing data. The
satellite data, for their part, are not available everywhere

and not available continuously. Also, satellite retrievals
represent only a shallow near-surface layer and do not
provide critical information about soil moisture in the root
zone.
[3] Many have argued that a land assimilation system that

merges satellite retrievals and model soil moisture will
provide optimal global estimates of the state of the land
surface. In a data assimilation system, a model-generated soil
moisture is ‘‘corrected’’ toward an observational estimate,
with the degree of correction determined by the levels of error
associated with each. Idealized analyses with large-scale
assimilation systems, using synthetic (model-generated)
observational data, demonstrate the potential of the approach
[Walker and Houser, 2001; Reichle and Koster, 2003].
[4] Synthetic data studies, however, avoid a fundamental

difficulty associated with satellite data assimilation: the
strong biases that exist between satellite-based and model-
based soil moisture estimates [Reichle et al., 2004]. The top
panel of Figure 1 shows, for example, the difference
between the mean near-surface soil moisture field retrieved
from the C-band Scanning Multichannel Microwave Radi-
ometer (SMMR) over the period 1979–1987 [De Jeu, 2003]
and that simulated by the NASA Catchment land surface
model [Koster et al., 2000] for the same period. Despite
global coverage of the satellite, soil moisture retrievals are
not available in areas that contain frozen soil, a significant
fraction of surface water, or dense vegetation. As for the
model, it was forced with reanalysis data that have been
corrected by observations as much as possible [Berg et al.,
2003]. Precipitation – arguably the most critical input for
accurate soil moisture modeling – is based on a merged
product of satellite and gauge data from the Global Precip-
itation Climatology Project (GPCP, Version 2) [Huffman et
al., 1997]. Model soil moisture data have been generated at
the exact times and locations of SMMR retrievals, to ensure
maximum compatibility of the two data sets. The model’s
computational units are irregularly shaped catchments (or
watersheds) with an average area of about 2500 km2

[Reichle et al., 2004].
[5] Figure 1 shows that across the globe, SMMR retriev-

als are typically wetter than model soil moisture, except in
the eastern half of North America, northern Eurasia, and the
Sahel. The bottom panel of Figure 1 shows the
corresponding differences in the standard deviation (std)
of the instantaneous fields, that is the bias in the std. SMMR
retrievals exhibit more variability than model soil moisture
across North America, in northern Eurasia, southern Africa,
and southern Australia. Elsewhere, particularly in India,
SMMR retrievals are less variable in time than model soil
moisture. (Note that Reichle et al. [2004] used monthly data
as opposed to instantaneous data. Consequently, the time
series std in the present paper is about twice as large.)
[6] The satellite and model data clearly differ in their

statistical moments. These biases are not uniform but are
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spatially distributed with complex patterns and with magni-
tudes on the order of the dynamic range of the signal.
Furthermore, the relative accuracy of the two data sets
cannot be objectively determined. Reichle et al. [2004]
demonstrate that neither is clearly superior when compared
to the limited array of in situ point observations. Such bias
is unavoidable, both now and in the foreseeable future.
Even if the satellite retrievals could be considered unbiased
relative to nature, simulated soil moisture contents reflect
the many necessary simplifications imposed in the land
surface model and should arguably be considered model-
specific ‘‘indices of wetness’’ rather than quantities that can
be measured in the field [Koster and Milly, 1997] (See also
Entin et al. [1999] for a strong demonstration of the model-
specific nature of simulated soil moisture.) To merge
successfully the satellite observations with the model data,
biases across the statistical moments must be quantified and
corrected. In effect, the satellite-based moisture contents
must be converted (‘‘scaled’’) into moisture contents con-
sistent with the land surface model used.
[7] Herein lies a major problem. In order to correct the

biases, the temporal statistical moments of both the simu-
lated soil moisture and the satellite-derived soil moisture
must be well-established, and without further assumptions,
this would require many years of data for each. While
such data exist for the model-generated estimates, the
passive C-band Advanced Microwave Scanning Radiometer
for the Earth Observing System (AMSR-E) has become
operational only in June 2002. Two passive L-band sensors,
the Soil Moisture and Ocean Salinity (SMOS) mission
[Kerr et al., 2001] and the Hydrosphere State (HYDROS)
mission [Entekhabi et al., 2004], are still in their planning
stages. Moreover, the expected lifetime of these sensors is
only a few years. Given the tremendous investment placed
in the satellites, researchers are pressured to use the satellite
products in a data assimilation system as soon as they are
produced.

[8] We thus require a strategy for making use of a short
record of satellite data under the constraint that we do not
have global estimates of the data’s temporal statistical
moments. (Knowledge of the data’s uncertainty does not
ameliorate the problem, since we also do not know the true
statistical moments.) Here, we present a viable strategy
involving the ergodic substitution of variability in space
for variability in time. To demonstrate the strategy’s effec-
tiveness, we use a single year of the SMMR soil moisture
record to determine scaling parameters that convert an
instantaneous field of SMMR retrievals into a soil moisture
field consistent with the land surface model used. These
scaling parameters are then applied to the full 9 years of
SMMR data. When the statistical moments of the 9 years of
scaled satellite data are compared to those of the simulated
soil moisture fields, the biases in the mean and std are seen
to be much smaller than those in Figure 1, indicating that
the scaling, based on a single year of data, was a success.
These scaled data can be merged more reliably with land
model simulations in a data assimilation system.

2. Approach

[9] Our strategy for bias removal is to match the cumu-
lative distribution function (cdf) of the satellite retrievals to
the cdf of the model soil moisture. Similar cdf matching
techniques have been used, for example, to establish reflec-
tivity-rainfall relationships for calibration of radar or satellite
observations of precipitation [Atlas et al., 1990; Anagnostou
et al., 1999] and for long-range hydrologic forecasting
[Wood et al., 2002]. Our approach is illustrated in Figure 2,
which shows cdf’s of surface soil moisture at a particular
location in the Northern Great Plains (46N, 100W). At this
location, SMMR retrievals are considerably wetter and
exhibit more variability than model soil moisture. The scaled
satellite retrieval x0 is given by the solution to

cdfm x0ð Þ ¼ cdfs xð Þ; ð1Þ

where cdfs and cdfm denote the cdf’s of the satellite and
model soil moisture, respectively, and x is the unscaled
satellite soil moisture. Since assimilation systems ingest

Figure 1. Difference in 1979–1987 (top) mean and
(bottom) std of SMMR soil moisture retrievals and model
soil moisture [m3m�3].

Figure 2. Cdf estimates at 46N, 100W: (Squares) 1979–
1987 SMMR retrievals, (Solid line, no marker) 1979–1987
model soil moisture, (Circles) 1979 only SMMR retrievals
using a spatial sampling window of 2 degree radius
(approximate cdf), (Stars) 1979–1987 SMMR retrievals
scaled with approximate cdf.
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instantaneous satellite retrievals at the local scale,
equation (1) is solved at each location after estimating the
corresponding local cdf’s. The bold arrows in Figure 2
illustrate schematically how the unscaled satellite retrieval
x is converted into the scaled retrieval x0 (using the ‘‘ideal’’
cdf estimated from 1979–1987 SMMR retrievals.) Note
that cdf matching corrects all moments of the distribution
function regardless of its shape, subject to statistical errors
associated with a limited sample size. In practice, we can
expect meaningful estimates only for the first few moments,
and limit ourselves to analyzing the mean, std, and
skewness.
[10] Our goal is to obtain an acceptable estimate of the

cdf used for scaling from only the first year of SMMR data.
In order to control statistical noise in the cdf estimate, we
estimate the temporal statistics at a given site by using
observations at neighboring locations that are within a
chosen distance from the site. In other words, we apply a
moving spatial sampling window to the computation of the
statistics and implicitly assume some degree of ergodicity in
the data. We then use this approximate estimate of the
cdf (based on just one year of SMMR data) to solve
equation (1) and obtain 9 years of scaled SMMR retrievals
from the 9 years of unscaled SMMR data. Finally, we
compare the statistics of the scaled data set to those of the
model soil moisture. Note that the model cdf used for
scaling is based on model soil moisture from 1979 to 1987.

3. Results

[11] Robust estimation of statistics requires sufficient
data. Our cutoff criterion for estimating the local cdf is that
at least 100 measurements must be available within the
spatial sampling window. Naturally, the degree of global
coverage of cdf estimates obtained in this way increases
rapidly with the size of the window, but so does the error
associated with the ergodicity assumption. We are thus
faced with a trade-off between coverage and error. To
quantify this trade-off, we tried several spatial sampling
windows with radii ranging from 0 to 5 degrees.
[12] Since the ergodicity error increases monotonically

with the window size, a reasonable approach is to use the
minimum window size for which the coverage of the
approximate cdf estimates (obtained from one year of
SMMR data) is almost complete relative to the coverage
obtained when the cdf is estimated from 9 years of SMMR
data without spatial sampling. For SMMR, this approach
suggests that the optimal spatial sampling window has a
radius of 2 degrees. The approximate SMMR cdf based on
1979 data only and using a 2 degree spatial sampling
window is illustrated in Figure 2 for the representative
location in the Northern Great Plains. The rough agreement
with the full SMMR cdf is an indication of the validity of
the ergodicity assumption. When 9 years of SMMR retriev-
als are scaled using this approximate cdf estimate, the cdf
of the resulting scaled SMMR retrievals (also shown in
Figure 2) is much closer to the model cdf than before
scaling.
[13] Figure 3 shows global maps of the biases obtained

when the statistics of the scaled SMMR retrievals (using
approximate cdf estimates) are compared to those of the
model soil moisture. As in Figure 1, the biases in Figure 3

are computed for the period from 1979 to 1987. While there
is some bias left, scaling with the approximate cdf based on
just one year of satellite data clearly removes much of the
biases seen in Figure 1. The biases after scaling depend only
weakly on the particular year used for estimating the cdf.
This is not surprising, given that the bias in the mean is
much larger than the interannual variability. Globally aver-
aged, the bias in the mean (or std; or skewness) is reduced
by 80% (or 55%; or 25%) when only a single year of
SMMR retrievals is used to estimate the cdf used for
scaling. Since cdf estimation involves finite size bins, even
scaling with the ‘‘ideal’’ cdf that is computed from the entire
SMMR history does not completely eliminate the biases,
particularly in the higher moments. In the ideal case, the
bias in the mean (or std; or skewness) is reduced by 98% (or
90%; or 55%).

4. Conclusions

[14] We use the 9-year SMMR record to demonstrate that
temporal sampling of SMMR soil moisture retrievals can be
traded off against spatial sampling. Robust estimation of the
statistics for bias removal via cdf matching was accom-
plished using only a one-year satellite record. When only
one year of data is available and the cutoff criterion for
computation of statistics is set to 100 data points, a
reasonable approach is to estimate the cdf used for scaling
by applying a spatial sampling window with a 2 degree
radius. In this case, the global average bias in the mean of
the scaled SMMR 9-year data set (relative to model soil
moisture) is reduced by 80% when compared to the original
bias of the unscaled SMMR retrievals. For the bias in the std
(skewness), cdf matching permits bias reduction by 55%
(25%). With our method, current and future satellite retriev-
als of soil moisture can be assimilated more confidently in
near-real time using only a one-year climatology.

Figure 3. Same as Figure 1 except that SMMR retrievals
were scaled with an approximate cdf estimated from 1979
only SMMR data using a spatial sampling window
(2 degree radius).
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[15] Although differences in the spatial and temporal
mean and variability between state-of-the-art land surface
modeling systems are substantial, our method does not
depend on the particular model used precisely because we
scale the satellite retrievals to be consistent with the given
model. Finally, AMSR-E and future sensors yield improved
measurements of brightness temperatures compared to
SMMR. Most importantly, AMSR-E offers higher sampling
rates than SMMR (around 2.5 times higher spatial resolu-
tion and wider swath width), which may permit reducing the
size of the spatial sampling window and hence the ergodic-
ity error. Nevertheless, the retrievals used here are based on
a state-of-the-art algorithm, as is the modeling system.
Therefore, the underlying errors in the retrieval algorithm,
the land surface model, and the surface meteorological
forcing data are unlikely to change significantly in the near
future. Our approach presents a valuable tool for the
imminent operational use of AMSR-E and future soil
moisture retrievals.
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